Source code for mammopy.visualization

import sys, os
sys.path.insert(0, os.path.abspath('.'))
import numpy as np
import matplotlib.pyplot as plt
import mammopy as mi


[docs]class visualization():
[docs] def visualize_breast_dense_segmentation(image, breast_prediction_mask, dense_prediction_mask): """ Computes the plots of mammogram/s. Args: image: Input image in np.ndarray breast_prediction_mask: Customize output to visualize Breast Area dense_prediction_mask: Customize output to visualize Dense Area Returns: Three plots: - Combined plot of breast and dense area. - Plot of breast area. - Plot of dense area. Raises: TypeError: If `image` is not in nd.narray format. TypeError: If `breast_prediction_mask` is not in nd.narray format. TypeError: If `dense_prediction_mask` is not in nd.narray format. """ if (type(image) not in [np.ndarray]) and (type(breast_prediction_mask) not in [np.ndarray]) and (type(dense_prediction_mask) not in [np.ndarray]): raise TypeError("All Inputs must be np.ndarray") edges = mi.analysis.canny_edges(breast_prediction_mask) #plotttig the results combined_sigm, axes = plt.subplots(1,2, figsize = (15,10),squeeze=False) axes[0, 0].set_title('Image', fontsize=16) axes[0, 1].set_title("Breast and dense tissue segmentation", fontsize=20) axes[0, 0].imshow(image, cmap='gray') axes[0, 0].set_axis_off() axes[0, 1].imshow(image, cmap='gray') axes[0, 1].imshow(mi.analysis.mask_to_rgba(edges, color='red'), cmap='gray') axes[0, 1].imshow(mi.analysis.mask_to_rgba(dense_prediction_mask, color='green'), cmap='gray', alpha=0.7) axes[0, 1].set_axis_off() brest_sigm, axes = plt.subplots(1,1, squeeze=False) axes[0, 0].imshow(image, cmap='gray') axes[0, 0].imshow(mi.analysis.mask_to_rgba(edges, color='red'), cmap='gray') axes[0, 0].set_axis_off() dens_sigm, axes = plt.subplots(1,1, squeeze=False) axes[0, 0].imshow(image, cmap='gray') axes[0, 0].imshow(mi.analysis.mask_to_rgba(dense_prediction_mask, color='green'), cmap='gray', alpha=0.7) axes[0, 0].set_axis_off() return combined_sigm, brest_sigm, dens_sigm